Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
researchsquare; 2024.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3958951.v1

Résumé

The continued evolution of SARS-CoV-2 underscores the need to understand qualitative aspects of the humoral immune response elicited by spike immunization. Here, we combined monoclonal antibody (mAb) isolation with deep B cell receptor (BCR) repertoire sequencing of rhesus macaques immunized with prefusion-stabilized spike glycoprotein. Longitudinal tracing of spike-sorted B cell lineages in multiple immune compartments demonstrated increasing somatic hypermutation and broad dissemination of vaccine-elicited B cells in draining and non-draining lymphoid compartments, including the bone marrow, spleen and, most notably, periaortic lymph nodes. Phylogenetic analysis of spike-specific monoclonal antibody lineages identified through deep repertoire sequencing delineated extensive intra-clonal diversification that shaped neutralizing activity. Structural analysis of the spike in complex with a broadly neutralizing mAb provided a molecular basis for the observed differences in neutralization breadth between clonally related antibodies. Our findings highlight that immunization leads to extensive intra-clonal B cell evolution where members of the same lineage can both retain the original epitope specificity and evolve to recognize additional spike variants not previously encountered.

2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.09.16.508299

Résumé

Several sublineages of omicron have emerged with additional mutations that may afford further antibody evasion. Here, we characterise the sensitivity of emerging omicron sublineages BA.2.75.2, BA.4.6, and BA.2.10.4 to antibody-mediated neutralisation, and identify extensive escape by BA.2.75.2. BA.2.75.2 was resistant to neutralisation by Evusheld (tixagevimab + cilgavimab), but remained sensitive to bebtelovimab. In recent serum samples from blood donors in Stockholm, Sweden, BA.2.75.2 was neutralised, on average, five-fold less potently than BA.5, representing the most neutralisation resistant variant evaluated to date. These data raise concerns that BA.2.75.2 may effectively evade humoral immunity in the population.

3.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.07.19.500716

Résumé

Towards the end of 2021, SARS-CoV-2 vaccine effectiveness was threatened by the emergence of the Omicron clade (B.1.1.529), with more than 30 mutations in spike. Recently, several sublineages of Omicron, including BA.2.12.1, BA.4, and BA.5, have demonstrated even greater immune evasion, and are driving waves of infections across the globe. One emerging sublineage, BA.2.75, is increasing in frequency in India and has been detected in at least 15 countries as of 19 July 2022. Relative to BA.2, BA.2.75 carries nine additional mutations in spike. Here we report the sensitivity of the BA.2.75 spike to neutralization by a panel of clinically-relevant and pre-clinical monoclonal antibodies, as well as by serum from blood donated in Stockholm, Sweden, before and after the BA.1/BA.2 infection wave. BA.2.75 does not show greater immune evasion than the currently-dominating BA.5 in our set of serum samples, and exhibits moderate susceptibility to tixagevimab and cilgavimab that form a widely used monoclonal antibody cocktail (Evusheld).

SÉLECTION CITATIONS
Détails de la recherche